Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 181
Filtrar
1.
Front Immunol ; 15: 1378813, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38720892

RESUMEN

Background: Blocking the CD47 "don't eat me"-signal on tumor cells with monoclonal antibodies or fusion proteins has shown limited clinical activity in hematologic malignancies and solid tumors thus far. Main side effects are associated with non-tumor targeted binding to CD47 particularly on blood cells. Methods: We present here the generation and preclinical development of NILK-2401, a CEACAM5×CD47 bispecific antibody (BsAb) composed of a common heavy chain and two different light chains, one kappa and one lambda, determining specificity (so-called κλ body format). Results: NILK-2401 is a fully human BsAb binding the CEACAM5 N-terminal domain on tumor cells by its lambda light chain arm with an affinity of ≈4 nM and CD47 with its kappa chain arm with an intendedly low affinity of ≈500 nM to enabling tumor-specific blockade of the CD47-SIRPα interaction. For increased activity, NILK-2401 features a functional IgG1 Fc-part. NILK-2401 eliminates CEACAM5-positive tumor cell lines (3/3 colorectal, 2/2 gastric, 2/2 lung) with EC50 for antibody-dependent cellular phagocytosis and antibody-dependent cellular cytotoxicity ranging from 0.38 to 25.84 nM and 0.04 to 0.25 nM, respectively. NILK-2401 binds neither CD47-positive/CEACAM5-negative cell lines nor primary epithelial cells. No erythrophagocytosis or platelet activation is observed. Quantification of the pre-existing NILK-2401-reactive T-cell repertoire in the blood of 14 healthy donors with diverse HLA molecules shows a low immunogenic potential. In vivo, NILK-2401 significantly delayed tumor growth in a NOD-SCID colon cancer model and a syngeneic mouse model using human CD47/human SIRPα transgenic mice and prolonged survival. In cynomolgus monkeys, single doses of 0.5 and 20 mg/kg were well tolerated; PK linked to anti-CD47 and Fc-binding seemed to be more than dose-proportional for Cmax and AUC0-inf. Data were validated in human FcRn TG32 mice. Combination of a CEACAM5-targeting T-cell engager (NILK-2301) with NILK-2401 can either boost NILK-2301 activity (Emax) up to 2.5-fold or allows reaching equal NILK-2301 activity at >600-fold (LS174T) to >3,000-fold (MKN-45) lower doses. Conclusion: NILK-2401 combines promising preclinical activity with limited potential side effects due to the tumor-targeted blockade of CD47 and low immunogenicity and is planned to enter clinical testing.


Asunto(s)
Anticuerpos Biespecíficos , Antígeno CD47 , Antígeno Carcinoembrionario , Anticuerpos Biespecíficos/inmunología , Anticuerpos Biespecíficos/farmacología , Humanos , Animales , Ratones , Antígeno CD47/inmunología , Antígeno CD47/antagonistas & inhibidores , Línea Celular Tumoral , Antígeno Carcinoembrionario/inmunología , Ensayos Antitumor por Modelo de Xenoinjerto , Neoplasias/inmunología , Neoplasias/tratamiento farmacológico , Femenino , Macaca fascicularis , Antineoplásicos Inmunológicos/farmacología , Antineoplásicos Inmunológicos/inmunología , Proteínas Ligadas a GPI
2.
Cancer Res Commun ; 4(4): 1150-1164, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38598843

RESUMEN

Multiple myeloma involves early dissemination of malignant plasma cells across the bone marrow; however, the initial steps of dissemination remain unclear. Human bone marrow-derived mesenchymal stromal cells (hMSC) stimulate myeloma cell expansion (e.g., IL6) and simultaneously retain myeloma cells via chemokines (e.g., CXCL12) and adhesion factors. Hence, we hypothesized that the imbalance between cell division and retention drives dissemination. We present an in vitro model using primary hMSCs cocultured with INA-6 myeloma cells. Time-lapse microscopy revealed proliferation and attachment/detachment dynamics. Separation techniques (V-well adhesion assay and well plate sandwich centrifugation) were established to isolate MSC-interacting myeloma subpopulations that were characterized by RNA sequencing, cell viability, and apoptosis. Results were correlated with gene expression data (n = 837) and survival of patients with myeloma (n = 536). On dispersed hMSCs, INA-6 saturate hMSC surface before proliferating into large homotypic aggregates, from which single cells detached completely. On confluent hMSCs, aggregates were replaced by strong heterotypic hMSC-INA-6 interactions, which modulated apoptosis time dependently. Only INA-6 daughter cells (nMA-INA6) detached from hMSCs by cell division but sustained adherence to hMSC-adhering mother cells (MA-INA6). Isolated nMA-INA6 indicated hMSC autonomy through superior viability after IL6 withdrawal and upregulation of proliferation-related genes. MA-INA6 upregulated adhesion and retention factors (CXCL12), that, intriguingly, were highly expressed in myeloma samples from patients with longer overall and progression-free survival, but their expression decreased in relapsed myeloma samples. Altogether, in vitro dissemination of INA-6 is driven by detaching daughter cells after a cycle of hMSC-(re)attachment and proliferation, involving adhesion factors that represent a bone marrow-retentive phenotype with potential clinical relevance. SIGNIFICANCE: Novel methods describe in vitro dissemination of myeloma cells as detachment of daughter cells after cell division. Myeloma adhesion genes were identified that counteract in vitro detachment with potential clinical relevance.


Asunto(s)
Adhesión Celular , Proliferación Celular , Células Madre Mesenquimatosas , Mieloma Múltiple , Humanos , Mieloma Múltiple/patología , Mieloma Múltiple/genética , Mieloma Múltiple/metabolismo , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/patología , Apoptosis , Técnicas de Cocultivo , Línea Celular Tumoral , Agregación Celular , Supervivencia Celular
3.
Lancet Haematol ; 11(2): e101-e113, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38302221

RESUMEN

BACKGROUND: The aim of this trial was to investigate the addition of the anti-SLAMF7 monoclonal antibody elotuzumab to lenalidomide, bortezomib, and dexamethasone (RVd) in induction and consolidation therapy as well as to lenalidomide maintenance treatment in transplant-eligible patients with newly diagnosed multiple myeloma. METHODS: GMMG-HD6 was a phase 3, randomised trial conducted at 43 main trial sites and 26 associated trial sites throughout Germany. Adult patients (aged 18-70 years) with previously untreated, symptomatic multiple myeloma, and a WHO performance status of 0-3, with 3 being allowed only if caused by myeloma disease and not by comorbid conditions, were randomly assigned 1:1:1:1 to four treatment groups. Induction therapy consisted of four 21-day cycles of RVd (lenalidomide 25 mg orally on days 1-14; bortezomib 1·3 mg/m2 subcutaneously on days 1, 4, 8, and 11]; and dexamethasone 20 mg orally on days 1, 2, 4, 5, 8, 9, 11, 12, and 15 for cycles 1-2) or, RVd induction plus elotuzumab (10 mg/kg intravenously on days 1, 8, and 15 for cycles 1-2, and on days 1 and 11 for cycles 3-4; E-RVd). Autologous haematopoietic stem-cell transplantation was followed by two 21-day cycles of either RVd consolidation (lenalidomide 25 mg orally on days 1-14; bortezomib 1·3 mg/m2 subcutaneously on days 1, 8, and 15; and dexamethasone 20 mg orally on days 1, 2, 8, 9, 15, and 16) or elotuzumab plus RVd consolidation (with elotuzumab 10 mg/kg intravenously on days 1, 8, and 15) followed by maintenance with either lenalidomide (10 mg orally on days 1-28 for cycles 1-3; thereafter, up to 15 mg orally on days 1-28; RVd/R or E-RVd/R group) or lenalidomide plus elotuzumab (10 mg/kg intravenously on days 1 and 15 for cycles 1-6, and on day 1 for cycles 7-26; RVd/E-R or E-RVd/E-R group) for 2 years. The primary endpoint was progression-free survival analysed in a modified intention-to-treat (ITT) population. Safety was analysed in all patients who received at least one dose of trial medication. This trial is registered with ClinicalTrials.gov, NCT02495922, and is completed. FINDINGS: Between June 29, 2015, and on Sept 11, 2017, 564 patients were included in the trial. The modified ITT population comprised 559 (243 [43%] females and 316 [57%] males) patients and the safety population 555 patients. After a median follow-up of 49·8 months (IQR 43·7-55·5), there was no difference in progression-free survival between the four treatment groups (adjusted log-rank p value, p=0·86), and 3-year progression-free survival rates were 69% (95% CI 61-77), 69% (61-76), 66% (58-74), and 67% (59-75) for patients treated with RVd/R, RVd/E-R, E-RVd/R, and E-RVd/E-R, respectively. Infections (grade 3 or worse) were the most frequently observed adverse event in all treatment groups (28 [20%] of 137 for RVd/R; 32 [23%] of 138 for RVd/E-R; 35 [25%] of 138 for E-RVd/R; and 48 [34%] of 142 for E-RVd/E-R). Serious adverse events (grade 3 or worse) were observed in 68 (48%) of 142 participants in the E-RVd/E-R group, 53 (39%) of 137 in the RVd/R, 53 (38%) of 138 in the RVd/E-R, and 50 (36%) of 138 in the E-RVd/R (36%) group. There were nine treatment-related deaths during the study. Two deaths (one sepsis and one toxic colitis) in the RVd/R group were considered lenalidomide-related. One death in the RVd/E-R group due to meningoencephalitis was considered lenalidomide and elotuzumab-related. Four deaths (one pulmonary embolism, one septic shock, one atypical pneumonia, and one cardiovascular failure) in the E-RVd/R group and two deaths (one sepsis and one pneumonia and pulmonary fibrosis) in the E-RVd/E-R group were considered related to lenalidomide or elotuzumab, or both. INTERPRETATION: Addition of elotuzumab to RVd induction or consolidation and lenalidomide maintenance in patients with transplant-eligible newly diagnosed multiple myeloma did not provide clinical benefit. Elotuzumab-containing therapies might be reserved for patients with relapsed or refractory multiple myeloma. FUNDING: Bristol Myers Squibb/Celgene and Chugai.


Asunto(s)
Anticuerpos Monoclonales Humanizados , Trasplante de Células Madre Hematopoyéticas , Mieloma Múltiple , Neumonía , Sepsis , Adulto , Masculino , Femenino , Humanos , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/diagnóstico , Lenalidomida/efectos adversos , Bortezomib/efectos adversos , Dexametasona/efectos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Trasplante Autólogo , Neumonía/etiología , Sepsis/inducido químicamente , Sepsis/tratamiento farmacológico
4.
Hematology ; 29(1): 2320006, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38407192

RESUMEN

OBJECTIVES: The seroprevalence of antibodies against Cytomegalovirus (CMV) is an established poor prognostic factor for patients receiving an allogeneic stem cell transplantation. However, the impact of CMV serology on outcome after autologous stem cell transplantation remains unknown. METHODS: Here, we analyzed the CMV immunoglobulin (Ig) serology of 446 newly-diagnosed multiple myeloma (MM) patients of the GMMG-MM5 phase III trial with a median follow-up of 58 months. RESULTS: CMV IgG and IgM positivity was seen in 51% and 6% of the patients, respectively. In multivariate analysis CMV IgG and CMV IgM serology show an age-depending effect for PFS. We identified positive CMV IgG/positive CMV IgM serology as an age-depending beneficial factor on PFS. DISCUSSION: Younger patients with a positive CMV IgG/positive CMV IgM serology experienced a favorable effect on PFS, whereas a positive CMV IgG/positive CMV IgM serology at older age has a disadvantageous effect on PFS.


Asunto(s)
Infecciones por Citomegalovirus , Trasplante de Células Madre Hematopoyéticas , Mieloma Múltiple , Humanos , Citomegalovirus , Mieloma Múltiple/diagnóstico , Mieloma Múltiple/terapia , Prevalencia , Estudios Seroepidemiológicos , Trasplante Autólogo , Inmunoglobulinas Intravenosas , Anticuerpos Antivirales , Inmunoglobulina G , Infecciones por Citomegalovirus/epidemiología , Inmunoglobulina M
5.
J Hematol Oncol ; 16(1): 117, 2023 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-38087365

RESUMEN

BACKGROUND: T-cell retargeting to eliminate CEACAM5-expressing cancer cells via CEACAM5xCD3 bispecific antibodies (BsAbs) showed limited clinical activity so far, mostly due to insufficient T-cell activation, dose-limiting toxicities, and formation of anti-drug antibodies (ADA). METHODS: We present here the generation and preclinical development of NILK-2301, a BsAb composed of a common heavy chain and two different light chains, one kappa and one lambda, determining specificity (so-called κλ body format). RESULTS: NILK-2301 binds CD3ɛ on T-cells with its lambda light chain arm with an affinity of ≈100 nM, and the CEACAM5 A2 domain on tumor cells by its kappa light chain arm with an affinity of ≈5 nM. FcγR-binding is abrogated by the "LALAPA" mutation (Leu234Ala, Leu235Ala, Pro329Ala). NILK-2301 induced T-cell activation, proliferation, cytokine release, and T-cell dependent cellular cytotoxicity of CEACAM5-positive tumor cell lines (5/5 colorectal, 2/2 gastric, 2/2 lung), e.g., SK-CO-1 (Emax = 89%), MKN-45 (Emax = 84%), and H2122 (Emax = 97%), with EC50 ranging from 0.02 to 0.14 nM. NILK-2301 binds neither to CEACAM5-negative or primary colon epithelial cells nor to other CEACAM family members. NILK-2301 alone or in combination with checkpoint inhibition showed activity in organotypic tumor tissue slices and colorectal cancer organoid models. In vivo, NILK-2301 at 10 mg/kg significantly delayed tumor progression in colon- and a pancreatic adenocarcinoma model. Single-dose pharmacokinetics (PK) and tolerability in cynomolgus monkeys at 0.5 or 10 mg/kg intravenously or 20 mg subcutaneously showed dose-proportional PK, bioavailability ≈100%, and a projected half-life in humans of 13.1 days. NILK-2301 was well-tolerated. Data were confirmed in human FcRn TG32 mice. CONCLUSIONS: In summary, NILK-2301 combines promising preclinical activity and safety with lower probability of ADA-generation due to its format compared to other molecules and is scheduled to enter clinical testing at the end of 2023.


Asunto(s)
Adenocarcinoma , Anticuerpos Biespecíficos , Neoplasias Pancreáticas , Humanos , Animales , Ratones , Anticuerpos Biespecíficos/farmacología , Anticuerpos Biespecíficos/uso terapéutico , Adenocarcinoma/tratamiento farmacológico , Neoplasias Pancreáticas/tratamiento farmacológico , Línea Celular Tumoral , Inmunoterapia , Complejo CD3 , Antígeno Carcinoembrionario , Proteínas Ligadas a GPI
6.
Front Immunol ; 14: 1286700, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38035078

RESUMEN

Background: Immunotherapeutic targets in multiple myeloma (MM) have variable expression height and are partly expressed in subfractions of patients only. With increasing numbers of available compounds, strategies for appropriate choice of targets (combinations) are warranted. Simultaneously, risk assessment is advisable as patient's life expectancy varies between months and decades. Methods: We first assess feasibility of RNA-sequencing in a multicenter trial (GMMG-MM5, n=604 patients). Next, we use a clinical routine cohort of untreated symptomatic myeloma patients undergoing autologous stem cell transplantation (n=535, median follow-up (FU) 64 months) to perform RNA-sequencing, gene expression profiling (GEP), and iFISH by ten-probe panel on CD138-purified malignant plasma cells. We subsequently compare target expression to plasma cell precursors, MGUS (n=59), asymptomatic (n=142) and relapsed (n=69) myeloma patients, myeloma cell lines (n=26), and between longitudinal samples (MM vs. relapsed MM). Data are validated using the independent MMRF CoMMpass-cohort (n=767, FU 31 months). Results: RNA-sequencing is feasible in 90.8% of patients (GMMG-MM5). Actionable immune-oncological targets (n=19) can be divided in those expressed in all normal and >99% of MM-patients (CD38, SLAMF7, BCMA, GPRC5D, FCRH5, TACI, CD74, CD44, CD37, CD79B), those with expression loss in subfractions of MM-patients (BAFF-R [81.3%], CD19 [57.9%], CD20 [82.8%], CD22 [28.4%]), aberrantly expressed in MM (NY-ESO1/2 [12%], MUC1 [12.7%], CD30 [4.9%], mutated BRAF V600E/K [2.1%]), and resistance-conveying target-mutations e.g., against part but not all BCMA-directed treatments. Risk is assessable regarding proliferation, translated GEP- (UAMS70-, SKY92-, RS-score) and de novo (LfM-HRS) defined risk scores. LfM-HRS delineates three groups of 40%, 38%, and 22% of patients with 5-year and 12-year survival rates of 84% (49%), 67% (18%), and 32% (0%). R-ISS and RNA-sequencing identify partially overlapping patient populations, with R-ISS missing, e.g., 30% (22/72) of highly proliferative myeloma. Conclusion: RNA-sequencing based assessment of risk and targets for first choice treatment is possible in clinical routine.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Mieloma Múltiple , Humanos , Mieloma Múltiple/terapia , Mieloma Múltiple/tratamiento farmacológico , ARN , Antígeno de Maduración de Linfocitos B , Trasplante Autólogo
8.
J Immunother Cancer ; 11(1)2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36650020

RESUMEN

BACKGROUND: Immunotherapy emerged as a promising treatment option for multiple myeloma (MM) patients. However, therapeutic efficacy can be hampered by the presence of an immunosuppressive bone marrow microenvironment including myeloid cells. S100A9 was previously identified as a key regulator of myeloid cell accumulation and suppressive activity. Tasquinimod, a small molecule inhibitor of S100A9, is currently in a phase Ib/IIa clinical trial in MM patients (NCT04405167). We aimed to gain more insights into its mechanisms of action both on the myeloma cells and the immune microenvironment. METHODS: We analyzed the effects of tasquinimod on MM cell viability, cell proliferation and downstream signaling pathways in vitro using RNA sequencing, real-time PCR, western blot analysis and multiparameter flow cytometry. Myeloid cells and T cells were cocultured at different ratios to assess tasquinimod-mediated immunomodulatory effects. The in vivo impact on immune cells (myeloid cell subsets, macrophages, dendritic cells), tumor load, survival and bone disease were elucidated using immunocompetent 5TMM models. RESULTS: Tasquinimod treatment significantly decreased myeloma cell proliferation and colony formation in vitro, associated with an inhibition of c-MYC and increased p27 expression. Tasquinimod-mediated targeting of the myeloid cell population resulted in increased T cell proliferation and functionality in vitro. Notably, short-term tasquinimod therapy of 5TMM mice significantly increased the total CD11b+ cells and shifted this population toward a more immunostimulatory state, which resulted in less myeloid-mediated immunosuppression and increased T cell activation ex vivo. Tasquinimod significantly reduced the tumor load and increased the trabecular bone volume, which resulted in prolonged overall survival of MM-bearing mice in vivo. CONCLUSION: Our study provides novel insights in the dual therapeutic effects of the immunomodulator tasquinimod and fosters its evaluation in combination therapy trials for MM patients.


Asunto(s)
Resorción Ósea , Mieloma Múltiple , Quinolonas , Animales , Ratones , Resorción Ósea/metabolismo , Resorción Ósea/patología , Proliferación Celular , Inmunosupresores/farmacología , Mieloma Múltiple/patología , Células Mieloides/metabolismo , Quinolonas/farmacología , Quinolonas/uso terapéutico , Quinolonas/metabolismo , Microambiente Tumoral , Humanos
9.
Blood Cancer J ; 13(1): 1, 2023 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-36599831

RESUMEN

Mass spectrometry (MS) is a promising tool for monitoring monoclonal protein in plasma cell dyscrasias. We included 480 transplant-eligible newly-diagnosed multiple myeloma (MM) patients from the GMMG-MM5 trial (EudraCT No. 2010-019173-16) and performed a retrospective MS analysis at baseline (480 patients) and at the pre-defined, consecutive time points after induction (444 patients), prior to maintenance (305 patients) and after one year of maintenance (227 patients). We found that MS negativity was significantly associated with improved progression-free survival (PFS) even in patients with complete response (CR) at all investigated follow-up time points. The prognostic impact was independent of established risk factors, such as the revised International Staging System. Combining MS and baseline cytogenetics improved the prediction of outcome: MS-positive patients with high-risk cytogenetics had a dismal PFS of 1.9 years (95% confidence interval [CI]: 1.6-2.3 years) from the start of maintenance. Testing the value of sequential MS prior to and after one year of maintenance, patients converting from MS positivity to negativity had an excellent PFS (median not reached) while patients converting from MS negativity to positivity progressed early (median 0.6 years, 95% CI: 0.3-not reached). Among patients with sustained MS positivity, the baseline high-risk cytogenetic status had a significant impact and defined a group with poor PFS. Combining minimal residual disease (MRD) in the bone marrow and MS allowed the identification of double negative patients with a favorable PFS (median 3.33 years, 95% CI: 3.08-not reached) and no overall survival events. Our study provides strong evidence that MS is superior to conventional response monitoring, highlighting the potential of MS to become a new standard. Our data indicate that MS should be performed sequentially and combined with baseline disease features and MRD to improve its clinical value.Clinical Trials Register: EudraCT No. 2010-019173-16.


Asunto(s)
Mieloma Múltiple , Humanos , Médula Ósea , Mieloma Múltiple/diagnóstico , Mieloma Múltiple/tratamiento farmacológico , Neoplasia Residual/diagnóstico , Pronóstico , Estudios Retrospectivos , Resultado del Tratamiento , Espectrometría de Masas
10.
J Med Econ ; 26(1): 110-119, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36346000

RESUMEN

AIMS: The goal of this study was to review the economic evaluations of health technologies in multiple myeloma (MM) and provide guidance and recommendations for future health economic analyses. MATERIALS AND METHODS: A systemic literature review (SLR) was conducted on original economic assessment studies and structured review papers focusing on the studies in MM. The search was limited to English language papers published from 1 January 2000 onwards. Publications not applying any type of modelling methodology to describe disease progression and patient pathways over a specific time horizon were excluded. RESULTS: A total of 2,643 publications were initially identified, of which 148 were eligible to be included in the full-text review phase. From these, 49 publications were included in the final analysis. Most published health economic analyses supported by models came from high-income countries. Evaluations from middle-income countries were rarely published. Diagnostic technologies were rarely modelled and integrated care had not been modelled. Very few models investigated MM treatments from a societal perspective and there was a relative lack of evaluations regarding minimal residual disease (MRD). LIMITATIONS: Limitations of the publications included differences between trial populations and modelled populations, justification of methods, lack of confounder analyses, and small trial populations. Limitations of our study included the infeasibility of comparing MM economic evaluations due to the significant variance in modelled therapeutic lines and indications, and the relative scarcity of published economic evaluations from non-high-income countries. CONCLUSIONS: As published economic models lacked many of the elements of the complex and heterogeneous patient pathways in MM and they focused on single decision problems, a thorough, open-source economic whole disease modelling framework is needed to assess the economic value of a wide range of technologies across countries with various income levels with a more detailed view on MM, by including patient-centric and societal aspects.


Asunto(s)
Mieloma Múltiple , Humanos , Mieloma Múltiple/terapia , Modelos Económicos , Análisis Costo-Beneficio
11.
Value Health ; 26(1): 39-49, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35613958

RESUMEN

OBJECTIVES: Decision-aids (DAs) may facilitate shared decision-making for patients and caregivers, by providing evidence-based information to assist healthcare professionals, patients, and caregivers in making choices about aspects of care, and/or highlighting decision factors to discuss with the potential of altering the treatment decision. These decision factors may not be well integrated in DAs. METHODS: A systematic literature review was conducted in the field of multiple myeloma (MM) on peer-reviewed publications, extended with a gray literature search. Data on whether and how patient and caregiver experience elements, other than survival and physical quality of life, were mentioned as decision factors in the identified MM DAs were extracted and analyzed qualitatively. RESULTS: Seventy MM DAs were found and analyzed; 51% of DAs mentioned any patient non-routinely assessed experience decision factors and only 17% mentioned any caregiver-related information. One hundred and forty potential decision factors were extracted, deduplicated and categorized into the following categories: 1) financial, 2) mode of administration / transportation issues, 3) personal beliefs and values, 4) emotional and social quality of life, 5) other medical information, 6) availability of social support, 7) caregiver burden. None of the DAs presented a comprehensive framework on all seven categories of decision factors being consider when mapping patient and caregiver experience value elements in MM. CONCLUSIONS: Based on available DAs, we recommend a set of patient and caregiver experience decision factors that have the potential to affect treatment choices of patients with MM, which should be included in DAs, including MM clinical guidelines.


Asunto(s)
Técnicas de Apoyo para la Decisión , Mieloma Múltiple , Humanos , Cuidadores , Calidad de Vida , Mieloma Múltiple/terapia , Toma de Decisiones Conjunta , Toma de Decisiones , Participación del Paciente
12.
Front Immunol ; 13: 983181, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36569948

RESUMEN

Multiple myeloma (MM) is a hematologic cancer characterized by accumulation of malignant plasma cells in the bone marrow. To date, no definitive cure exists for MM and resistance to current treatments is one of the major challenges of this disease. The DNA helicase BLM, whose depletion or mutation causes the cancer-prone Bloom's syndrome (BS), is a central factor of DNA damage repair by homologous recombination (HR) and genomic stability maintenance. Using independent cohorts of MM patients, we identified that high expression of BLM is associated with a poor outcome with a significant enrichment in replication stress signature. We provide evidence that chemical inhibition of BLM by the small molecule ML216 in HMCLs (human myeloma cell lines) leads to cell cycle arrest and increases apoptosis, likely by accumulation of DNA damage. BLM inhibition synergizes with the alkylating agent melphalan to efficiently inhibit growth and promote cell death in HMCLs. Moreover, ML216 treatment re-sensitizes melphalan-resistant cell lines to this conventional therapeutic agent. Altogether, these data suggest that inhibition of BLM in combination with DNA damaging agents could be of therapeutic interest in the treatment of MM, especially in those patients with high BLM expression and/or resistance to melphalan.


Asunto(s)
Mieloma Múltiple , Humanos , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/genética , RecQ Helicasas/genética , RecQ Helicasas/metabolismo , Melfalán/farmacología , Melfalán/uso terapéutico , Reparación del ADN , Resistencia a Medicamentos
13.
J Med Econ ; 25(1): 1167-1175, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36397678

RESUMEN

AIM: The goal of this research was to quantify and qualify all the costs associated with multiple myeloma (MM) from a healthcare and societal perspective and to highlight certain costs that are often underestimated. MATERIALS AND METHODS: The study used a mixed methods approach that consisted of three phases: a systemic literature review (SLR), a virtual roundtable discussion based on the results of the SLR, and an online survey. RESULTS: In total, 4321 records were identified by literature and snowball searches. After applying the eligibility criteria, 49 articles were included in the narrative summary. As combination treatments have become the mainstay of MM treatment, drug costs have become the most important component of the total healthcare costs. Collected evidence suggests that optimizing treatment pathways, besides prolonging patient survival and maintaining quality of life, has the potential to generate cost savings for all stakeholders (payers and patients). Improved patient access to new therapies that can improve outcomes may reduce the "financial toxicity" of MM by decreasing patients' and caregivers' productivity loss due to better prognosis and it also has the potential of reducing patients' direct health care payments. LIMITATIONS: Heterogeneity of research objectives of included studies, costing methods, and applied measurement units limited the comparability of cost data between studies. Data for more than half of the world's population, including China, Russia, the Middle East, and Africa were not investigated. CONCLUSION: While treatment costs are burdensome for healthcare systems, it is only one of several items that make up the True Cost of MM. Understanding these burdens is one way to argue for optimized treatment pathways and improve patient outcomes by tearing down access barriers.


Asunto(s)
Mieloma Múltiple , Humanos , Ahorro de Costo , Atención a la Salud , Costos de la Atención en Salud , Mieloma Múltiple/tratamiento farmacológico , Calidad de Vida
14.
Front Cell Dev Biol ; 10: 879057, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35757005

RESUMEN

Multiple myeloma (MM) is an incurable clonal plasma cell malignancy. Subsets of patients have high-risk features linked with dismal outcome. Therefore, the need for effective therapeutic options remains high. Here, we used bio-informatic tools to identify novel targets involved in DNA repair and epigenetics and which are associated with high-risk myeloma. The prognostic significance of the target genes was analyzed using publicly available gene expression data of MM patients (TT2/3 and HM cohorts). Hence, protein arginine methyltransferase 5 (PRMT5) was identified as a promising target. Druggability was assessed in OPM2, JJN3, AMO1 and XG7 human myeloma cell lines using the PRMT5-inhibitor EPZ015938. EPZ015938 strongly reduced the total symmetric-dimethyl arginine levels in all cell lines and lead to decreased cellular growth, supported by cell line dependent changes in cell cycle distribution. At later time points, apoptosis occurred, as evidenced by increased AnnexinV-positivity and cleavage of PARP and caspases. Transcriptome analysis revealed a role for PRMT5 in regulating alternative splicing, nonsense-mediated decay, DNA repair and PI3K/mTOR-signaling, irrespective of the cell line type. PRMT5 inhibition reduced the expression of upstream DNA repair kinases ATM and ATR, which may in part explain our observation that EPZ015938 and the DNA-alkylating agent, melphalan, have combinatory effects. Of interest, using a low-dose of mTOR-inhibitor, we observed that cell viability was partially rescued from the effects of EPZ015938, indicating a role for mTOR-related pathways in the anti-myeloma activity of EPZ015938. Moreover, PRMT5 was shown to be involved in splicing regulation of MMSET and SLAMF7, known genes of importance in MM disease. As such, we broaden the understanding of the exact role of PRMT5 in MM disease and further underline its use as a possible therapeutic target.

15.
Int J Mol Sci ; 23(7)2022 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-35408876

RESUMEN

A novel resemblance-ranking peptide library with 160,000 10-meric peptides was designed to search for selective binders to antibodies. The resemblance-ranking principle enabled the selection of sequences that are most similar to the human peptidome. The library was synthesized with ultra-high-density peptide arrays. As proof of principle, screens for selective binders were performed for the therapeutic anti-CD20 antibody rituximab. Several features in the amino acid composition of antibody-binding peptides were identified. The selective affinity of rituximab increased with an increase in the number of hydrophobic amino acids in a peptide, mainly tryptophan and phenylalanine, while a total charge of the peptide remained relatively small. Peptides with a higher affinity exhibited a lower sum helix propensity. For the 30 strongest peptide binders, a substitutional analysis was performed to determine dissociation constants and the invariant amino acids for binding to rituximab. The strongest selective peptides had a dissociation constant in the hundreds of the nano-molar range. The substitutional analysis revealed a specific hydrophobic epitope for rituximab. To show that conformational binders can, in principle, be detected in array format, cyclic peptide substitutions that are similar to the target of rituximab were investigated. Since the specific binders selected via the resemblance-ranking peptide library were based on the hydrophobic interactions that are widespread in the world of biomolecules, the library can be used to screen for potential linear epitopes that may provide information about the cross-reactivity of antibodies.


Asunto(s)
Anticuerpos , Biblioteca de Péptidos , Aminoácidos , Epítopos , Humanos , Péptidos/química , Rituximab
16.
J Exp Clin Cancer Res ; 41(1): 45, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-35105345

RESUMEN

BACKGROUND: Multiple myeloma (MM) remains an incurable cancer despite advances in therapy. Therefore, the search for new targets is still essential to uncover potential treatment strategies. Metabolic changes, induced by the hypoxic bone marrow, contribute to both MM cell survival and drug resistance. Pyrroline-5-carboxylate reductase 1 and 2 (PYCR1 and PYCR2) are two mitochondrial enzymes that facilitate the last step in the glutamine-to-proline conversion. Overexpression of PYCR1 is involved in progression of several cancers, however, its' role in hematological cancers is unknown. In this study, we investigated whether PYCR affects MM viability, proliferation and response to bortezomib. METHODS: Correlation of PYCR1/2 with overall survival was investigated in the MMRF CoMMpass trial (653 patients). OPM-2 and RPMI-8226 MM cell lines were used to perform in vitro experiments. RPMI-8226 cells were supplemented with 13C-glutamine for 48 h in both normoxia and hypoxia (< 1% O2, by chamber) to perform a tracer study. PYCR1 was inhibited by siRNA or the small molecule inhibitor pargyline. Apoptosis was measured using Annexin V and 7-AAD staining, viability by CellTiterGlo assay and proliferation by BrdU incorporation. Differential protein expression was evaluated using Western Blot. The SUnSET method was used to measure protein synthesis. All in vitro experiments were performed in hypoxic conditions. RESULTS: We found that PYCR1 and PYCR2 mRNA expression correlated with an inferior overall survival. MM cells from relapsed/refractory patients express significantly higher levels of PYCR1 mRNA. In line with the strong expression of PYCR1, we performed a tracer study in RPMI-8226 cells, which revealed an increased conversion of 13C-glutamine to proline in hypoxia. PYCR1 inhibition reduced MM viability and proliferation and increased apoptosis. Mechanistically, we found that PYCR1 silencing reduced protein levels of p-PRAS40, p-mTOR, p-p70, p-S6, p-4EBP1 and p-eIF4E levels, suggesting a decrease in protein synthesis, which we also confirmed in vitro. Pargyline and siPYCR1 increased bortezomib-mediated apoptosis. Finally, combination therapy of pargyline with bortezomib reduced viability in CD138+ MM cells and reduced tumor burden in the murine 5TGM1 model compared to single agents. CONCLUSIONS: This study identifies PYCR1 as a novel target in bortezomib-based combination therapies for MM.


Asunto(s)
Antineoplásicos/uso terapéutico , Bortezomib/uso terapéutico , Mieloma Múltiple/tratamiento farmacológico , Inhibidores de la Síntesis de la Proteína/uso terapéutico , Pirrolina Carboxilato Reductasas/uso terapéutico , Animales , Antineoplásicos/farmacología , Bortezomib/farmacología , Proliferación Celular , Humanos , Ratones , Mieloma Múltiple/mortalidad , Mieloma Múltiple/patología , Inhibidores de la Síntesis de la Proteína/farmacología , Pirrolina Carboxilato Reductasas/farmacología , Análisis de Supervivencia
17.
Blood Adv ; 6(2): 515-520, 2022 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-34768284

RESUMEN

Biomarkers that predict response to lenalidomide maintenance therapy in patients with multiple myeloma (MM) have remained elusive. We have shown that immunomodulatory drugs (IMiDs) exert anti-MM activity via destabilization of MCT1 and CD147. In this study, cell samples of 654 patients with MM who received lenalidomide (n = 455), thalidomide (n = 98), or bortezomib (n = 101) maintenance were assessed by gene expression profiling and RNA sequencing, followed by correlation of MCT1 and CD147 expression with data for progression-free survival (PFS) and overall survival (OS). Patients with high expression levels of MCT1 showed significantly reduced PFS (31.9 months vs 48.2 months in MCT1high vs MCT1low; P = .03) and OS (75.9 months vs not reached [NR] in MCT1high vs MCT1low; P = .001) in cases with lenalidomide maintenance, whereas MCT1 expression had no significant impact on PFS or OS in cases with bortezomib maintenance. We validated the predictive role of MCT1 for IMiD-based maintenance in an independent cohort of patients who received thalidomide (OS, 83.6 months vs NR in MCT1high vs MCT1low; P = .03). Functional validation showed that MCT1 overexpression in human MM cell lines significantly reduced the efficacy of lenalidomide, whereas no change was observed with bortezomib treatment, either in vitro or in a MM xenograft model. Our findings have established MCT1 expression as a predictive marker for response to lenalidomide-based maintenance in patients with MM.


Asunto(s)
Mieloma Múltiple , Biomarcadores , Bortezomib/farmacología , Bortezomib/uso terapéutico , Humanos , Lenalidomida/uso terapéutico , Mieloma Múltiple/terapia , Talidomida/farmacología , Talidomida/uso terapéutico
18.
Nat Commun ; 12(1): 6960, 2021 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-34845188

RESUMEN

Virtually all patients with multiple myeloma become unresponsive to treatment over time. Relapsed/refractory multiple myeloma (RRMM) is accompanied by the clonal evolution of myeloma cells with heterogeneous genomic aberrations and profound changes of the bone marrow microenvironment (BME). However, the molecular mechanisms that drive drug resistance remain elusive. Here, we analyze the heterogeneous tumor cell population and its complex interaction network with the BME of 20 RRMM patients by single cell RNA-sequencing before/after treatment. Subclones with chromosome 1q-gain express a specific transcriptomic signature and frequently expand during treatment. Furthermore, RRMM cells shape an immune suppressive BME by upregulation of inflammatory cytokines and close interaction with the myeloid compartment. It is characterized by the accumulation of PD1+ γδ T-cells and tumor-associated macrophages as well as the depletion of hematopoietic progenitors. Thus, our study resolves transcriptional features of subclones in RRMM and mechanisms of microenvironmental reprogramming with implications for clinical decision-making.


Asunto(s)
Resistencia a Antineoplásicos/genética , Regulación Neoplásica de la Expresión Génica , Mieloma Múltiple/genética , Transcriptoma , Microambiente Tumoral/genética , Antineoplásicos/uso terapéutico , Médula Ósea/efectos de los fármacos , Médula Ósea/inmunología , Médula Ósea/patología , Citocinas/genética , Citocinas/inmunología , Resistencia a Antineoplásicos/inmunología , Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Células Madre Hematopoyéticas/inmunología , Células Madre Hematopoyéticas/patología , Humanos , Linfocitos Intraepiteliales/inmunología , Linfocitos Intraepiteliales/patología , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/inmunología , Mieloma Múltiple/patología , Receptor de Muerte Celular Programada 1/genética , Receptor de Muerte Celular Programada 1/inmunología , Receptores de Antígenos de Linfocitos T gamma-delta/genética , Receptores de Antígenos de Linfocitos T gamma-delta/inmunología , Recurrencia , Análisis de Secuencia de ARN , Transducción de Señal , Análisis de la Célula Individual , Microambiente Tumoral/efectos de los fármacos , Microambiente Tumoral/inmunología
19.
Oncoimmunology ; 10(1): 2000699, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34777918

RESUMEN

Multiple myeloma (MM) is a hematological malignancy characterized by the presence of clonal plasma cells in the bone marrow niche. Despite significant therapeutic advances, MM remains incurable for the majority of patients. Targeted radionuclide therapy (TRNT) has emerged as a promising treatment option to eradicate residual cancer cells. In this study, we developed and characterized single-domain antibodies (sdAbs) against the MM-antigen CS1 and evaluated its therapeutic potential in MM using TRNT. We first validated CS1 as potential target for TRNT. CS1 is expressed in normal and malignant plasma cells in different disease stages including progression and relapse. It is expressed in dormant as well as proliferating MM cells, while low expression could be observed in environmental cells. Biodistribution studies demonstrated the specific uptake of anti-CS1 sdAbs in tissues of 5TMM cell infiltration including bone, spleen and liver. TRNT using anti-CS1 sdAbs labeled with actinium-225 significantly prolonged survival of syngeneic, immunocompetent 5T33MM mice. In addition, we observed an increase in CD8+ T-cells and more overall PD-L1 expression on immune and non-immune cells, implying an interferon gamma signature using actinium-225 labeled CS1-directed sdAbs. In this proof-of-principle study, we highlight, for the first time, the therapeutic potential and immunomodulating effects of anti-CS1 radionuclide therapy to target residual MM cells.


Asunto(s)
Mieloma Múltiple , Anticuerpos de Dominio Único , Actinio , Animales , Antígeno B7-H1 , Linfocitos T CD8-positivos , Humanos , Ratones , Mieloma Múltiple/terapia , Familia de Moléculas Señalizadoras de la Activación Linfocitaria , Distribución Tisular , Ensayos Antitumor por Modelo de Xenoinjerto
20.
Front Oncol ; 11: 757664, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34760702

RESUMEN

Transcription factor Growth Factor Independence 1 (GFI1) regulates the expression of genes important for survival, proliferation and differentiation of hematopoietic cells. A single nucleotide polymorphism (SNP) variant of GFI1 (GFI1-36N: serine replaced by asparagine at position 36), has a prevalence of 5-7% among healthy Caucasians and 10-15% in patients with myelodysplastic syndrome (MDS) and acute myeloid leukaemia (AML) predisposing GFI-36N carriers to these diseases. Since GFI1 is implicated in B cell maturation and plasma cell (PC) development, we examined its prevalence in patients with multiple myeloma (MM), a haematological malignancy characterized by expansion of clonal PCs. Strikingly, as in MDS and AML, we found that the GFI1-36N had a higher prevalence among MM patients compared to the controls. In subgroup analyses, GFI1-36N correlates to a shorter overall survival of MM patients characterized by the presence of t(4;14) translocation and gain of 1q21 (≤3 copies). MM patients carrying gain of 1q21 (≥3 copies) demonstrated poor progression free survival. Furthermore, gene expression analysis implicated a role for GFI1-36N in epigenetic regulation and metabolism, potentially promoting the initiation and progression of MM.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...